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We analyze the power of quantum adiabatic evolution algorithms (QAA) for solv-

ing random computationally hard optimization problems within a theoretical frame-

work based on the random matrix theory (RMT). We present two types of the driven

RMT models. In the first model, the driving Hamiltonian is represented by Brow-

nian motion in the matrix space. We use the Brownian motion model to obtain a

description of multiple avoided crossing phenomena. We show that the failure mech-

anism of the QAA is due to the interaction of the ground state with the ”cloud”

formed by most of the excited states, confirming that in the driven RMT models,

the Landau-Zener scenario of pairwise level repulsions is not relevant for the descrip-

tion of non-adiabatic corrections. We show that the QAA has a finite probability of

success in a certain range of parameters, implying the polynomial complexity of the

algorithm. The second model corresponds to the standard QAA with the problem

Hamiltonian taken from the Gaussian Unitary RMT ensemble (GUE). We show that

the level dynamics in this model can be mapped onto the dynamics in the Brownian

motion model. However, this driven GUE model always leads to the exponential

complexity of the algorithm due to the presence of the long-range multiple time

correlations of the eigenvalues. Our results indicate that the weakness of effective

transitions is the leading effect that can make the Markovian type QAA successful.
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I. INTRODUCTION

The quantum adiabatic algorithms (QAA) are designed for solving combinatorial search

and optimization problems based on the quantum evolution of the relevant systems [1].

These algorithms are based on adiabatic theory of Quantum Mechanics, stating that the

quantum state is closely following an instantaneous ground state of a slow-varying in time

control Hamiltonian, provided that the initial state was chosen to be a ground state of the

initial Hamiltonian. At the initial moment of time the control Hamiltonian has a simple

form with the known ground state that is easy to prepare and at the final moment of time

it coincides with the “problem” Hamiltonian HP which ground state encodes the solution of

optimization problem in question. For example, in the case of binary optimization problem

it can be chosen to reflect the bit-structure and cost spectrum of the problem

HP =
∑

z

Ez|z〉〈z| (1)

|z〉 = |z1〉1 ⊗ |z2〉2 ⊗ · · · ⊗ |zn〉n.

Here Ez is a cost function defined on a set of 2n binary strings z = {z1, . . . , zn} zj = 0, 1,

each containing n bits. The summation in (1) is over 2n states |z〉 forming the computational

basis of a quantum computer with n qubits. State |zj〉j of the j-th qubit is an eigenstate of

the Pauli matrix σ̂z with eigenvalue 1 − 2zj ± 1). If at the end of QAA the quantum state

is sufficiently close to the ground state of HP then the solution to the optimization problem

can be retrieved by the measurement.

Different problem arises in simulations of quantum many body systems on quantum

computer. In this case quantum Hamiltonian HP ,

HP =
∑

z,z′
Vzz′|z〉〈z′|, (2)

is not diagonal in the computational basis z〉 that is used for binary encoding (examples

being quantum spin systems). At the end of adiabatic evolution in QAA the system is

brought to the ground state of HP that is a superposition state
∑

z cz|z〉. Repeating the

adiabatic evolution in QAA multiple times and performing a measurement each time at the

final moment one can recover the ground state energy as well as the observable properties

of the ground state wave function. Similar approach has been recently demonstrated on

experiment where the quantum annealing of a disordered magnet was studied [2].
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It was shown [5, 25] that the system can be trapped during the QAA in the local minimum

of a cost function for a time that grows exponentially in the problem size n. It was also

shown [5] that an exponential delay time in quantum adiabatic algorithm can be interpreted

as a quantum-mechanical tunneling of an auxiliary large spin system.

The paper [6] demonstrates that tunneling can be avoided by a suitable modification of

the QAA evolution ”paths” with the same initial and final wave functions. The authors

presented a general approach using the ”stochastic” paths and numerical results indicated

that the HWP may be solved in polynomial time with finite probability. This approach

was further developed in [7], where the complete analytic characterization of the ”stochas-

tic” path evolution and probability of success was obtained. Moreover, experimental results

[2] suggest that quantum annealing can be performed much more efficiently then thermal

annealing and quantum tunneling can play a positive role in speeding the convergence pro-

cess. Similar conclusions were made in the subsequent publication [3] where the qualitative

theoretical analysis of the experimental system [2] was developed based on the cascade of

Landau-Zener avoided-crossings.

Rigorous analysis of the efficiency of QAA for the solution of hard random optimization

problems requires understanding of the ground-state dynamics of the quantum many body

Hamiltonian H(t) that is characterized by many complex features, such as quantum phase

transitions [4]. On the other hand it is known for many complex many body problems

that time-varying H(t) can possess universal properties described within the framework of

“driven” random matrix theory (RMT). At present it has not been established to what

extent universal features manifest themselves in the lower edge of the spectrum of H(t) for

the combinatorial optimization problems such as Satisfiability [1, 4], and others. However,

one can ask a different question: assuming certain universal properties of H(t), what effect

they will have on the performance of QAA? Solvable models for QAA using RMT methods

can provide important insight into the performance of QAA for generic random optimization

problems. In this paper we study analytically the dynamics of QAA in the two mutually-

related random optimization problems using methods of driven RMT. In Sec. II we introduce

relevant physical quantities to describe the complexity of QAA, in Sec. III we introduce the

approach to QAA based on driven RMT and method of optimal trajectory, in Sec. IV we

introduce the Brownian motion model for H(t), provide motivation for it and describe the

dynamics of QAA, Sec. V is a Conclusion.
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II. QUANTUM ADIABATIC ALGORITHM

In a standard QAA [1], one specifies the time-dependent control Hamiltonian H(t)

H(t) = α(t)HD + β (t) HP , (3)

with the initial and terminal conditions

α(0) = 1, β (0) = 0, (4)

α(T ) = 0, β (T ) = 1.

The Hamiltonian (3) guides the quantum evolution of the state vector |ψ(t)〉 from t = 0

to t = T , the run time of the algorithm, and HP is the “problem” Hamiltonian given in

(1). In case when the parametric evolution of the Hamiltonian (3) is sufficiently slow, the

Adiabatic theorem assures that the system initially occupying the ground state of the driver

HD = H (0), parametrically evolves into the ground state of HP = H(T ). The standard

estimate of the run time that provides such adiabatic evolution, is well known and given by

[1]

T & 1/∆2, (5)

where ∆ is the lowest value of the energy gap between the ground and the first excited

adiabatic states.

The ”driver” Hamiltonian HD is designed to cause the transitions between the eigenstates

of HP . According to the above discussion, one prepares the initial state of the system |ψ(0)〉
to be a ground state of H(0) = HD. It is typically constructed assuming no knowledge of

the solution of the classical optimization problem and related ground state of HP . In the

simplest case

HD = −C
n−1∑
j=0

σjx, |ψ(0)〉 = 2−n/2
∑

z

|z〉, (6)

where σjx is a Pauli matrix for j-th qubit and C > 0 is some scaling constant. Consider

instantaneous eigenstates |φk(τ)〉 of H(τ) with energies Ek(τ) arranged in non-decreasing

order at any value of τ ∈ (0, 1)

H|φk〉 = Ek|φk〉, k = 0, 1, . . . , 2n − 1. (7)
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Expanding the non-stationary wave function of the system in terms of the instantaneous

adiabatic basis (which is complete for any fixed τ ∈ (0, 1)), we obtain ([8]):

|ψ(t)〉 =
N∑

k=0

Ck (t) exp

[
−i
∫ t

dt′Ek (t′)
]
|φk (t)〉, (8)

with N = 2n − 1 complex coefficients {Ck (t)} satisfying the normalization condition
∑N

k=0 |Ck (t)|2 = 1 for t ∈ (0, T ), and we use the units with ~ = 1. Note that each quantity

|Ck (t)|2 (k = 0, ...N) is the probability to find the system in the instantaneous adiabatic

eigenstate |φk (t)〉 at time t. According to the above discussion and taking into account the

normalization condition, the initial conditions for (8) are given by

C0 (0) = 1, Ck (0) = 0, k = 1, . . . , N. (9)

Under the assumption that the populations of the excited states of the instantaneous Hamil-

tonian are small, the Schroedinger equation applied to (8) yields [8]

∂

∂t
Ck (t) = 〈φk (t) | ∂

∂t
|φ0 (t)〉 exp

{
−i
∫ t

dt′ [Ek (t′)− E0 (t′)]
}
, (10)

describing the dynamics of the non-adiabatic transitions from the ground state k = 0 to the

states with k = 1, . . . , N . Taking into account (10), we obtain the probability P0 (t) for the

system to remain in adiabatic ground state in the form

P0 (t) = 1− Γ (t) , (11)

with Γ (t) being a total probability of escape from the ground state, or failure of the QAA,

defined by

Γ (t) =
N∑

k=1

∫ t

0

dt′
∫ t

0

dt′′
(
∂

∂t′

)

k0

(
∂

∂t′′

)

0k

exp

{
−i
∫ t′′

t′
dτωk0 (τ)

}
. (12)

In (12),
(
∂
∂t

)
k0
≡ 〈φk (t) | ∂

∂t
|φ0 (t)〉 and ωk0 (t) = Ek (t) − E0 (t) is the transition frequency

between the ground and the k-th excited adiabatic state. In what follows, we will analyze the

probability (12) for a particular case of a driven RMT model for the problem Hamiltonian.
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III. RANDOM MATRIX ANALYSIS OF QAA

According to the above discussion, the problem Hamiltonian HP in QAA can have a

complex ground state encoding the optimal solution of the initial optimization problem.

Since operators HD and HP do not commute a total control Hamiltonian H(t) in general can

have a complex structure of its eigenvectors and eigenvalues in a certain range of t even when

HP is diagonal in computational basis (1). As a simple ”limiting case” of such a complex

Hamiltonian, one may study a random Hamiltonian sampled from one of the symmetry

ensembles of the Random Matrix Theory (RMT) [9]. In fact it has been shown that the

”random” Hamiltonians belonging to a certain symmetry class (say Unitary Ensemble, or

GUE), give a good description of the complex physical systems, which do not possess any

specific conservation laws and are only characterized by the symmetry class with respect

to the change of basis (unitary transformations) [9], [10]. In this section, we shall analyze

a specific case of such a ”random” control Hamiltonian, when the matrix elements of H(t)

evolve according to the Ornstein-Uhlenbeck processes [18] (motivations for such choice of a

dynamical model will be provided in a subsequent section)

dHkj (t)

dt
= −γHkj (t) + σξkj, (13)

here γ > 0 describes the dissipation, σ > 0 the noise amplitude and zkj (t) correspond to

N2 independent Langevin sources

〈ξkj (t) , ξk′j′ (t
′)〉 = δkk′δjj′δ (t− t′) . (14)

In (14), δkl stands for the Kronecker symbol and δ (t− t′) is a Dirac’s delta function. The

formal solution of the stochastic differential equation (13) is given by

Hkj (t) = Hkj (0) exp [−γt] + σ

∫ t

0

dt′ξkj (t′) exp [−γ (t− t′)] , (15)

where Hkj (0) is an arbitrary Hermitian matrix representing the ”initial condition” for the

driven random matrix Hkj (t = 0) = Hkj (0).

A. Angular Decomposition in GUE

The ”angular coordinates” for the Hermitian matricesH belonging to the General Unitary

Ensemble (GUE) [9] are defined by
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H = UΛU+, (16)

where the diagonal matrix Λij = δijλi represents the eigenvalues {λi} of H which are invari-

ant with respect to the unitary transformations Uij = ψ
(i)
j characterizing the j-th component

of the i-th eigenvector belonging to the eigenvalue number i. Therefore, the unitary ma-

trix U represents a particular choice of the basis and the vector Λ is basis-invariant. Note

that the unitarity conditions U+U = UU+ = I where I is a unit matrix, correspond to

the orthonormality and completeness of the basis ψ(i). Differentiating (16) and taking into

account the unitarity conditions, we obtain

U+dHU = dΛ + [dΩ,Λ] , (17)

where the generalized ”angular” motion is defined by

dΩ = U+dU, (18)

and [...] is a commutator, i.e. [dΩ, dΛ] = dΩΛ − ΛdΩ. Making use of (17), we obtain the

equations of motion for the eigenvalues and angles Ω in the ”local” basis with U = I, in the

form

dλk
dt

= σξkk − γλk +

(∑

l 6=k

σ2

λk − λl

)
,

(19)

dΩkj

dt
=

σ

λj − λk ξkj.

From (16), it follows that

dΩk0

dt
= 〈φk (t) | ∂

∂t
|φ0 (t)〉 =

(
∂

∂t

)

k0

,

(20)

λk (t)− λ0 (t) = Ek (t)− E0 (t) = ωk0 (t) ,

establishing the connection between the probability (12) and the angular decomposition

variables.
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B. Optimal Trajectories for Driven RMT

The first of equation (19) describes the many-particle system in 1D undergoing the Brow-

nian motion and interacting with the long-range pairwise potential ∼ 1/r [9], [10]. Impor-

tantly, the dynamics of the eigenvalues Λ (t) does not depend on the eigenvector dynamics

Ω (t). Since the velocities of the Brownian particles contain the noise terms, each realiza-

tion of the general many-particle trajectory in the phase space is drawn from the random

distribution characterized by a particular choice of the Langevin source trajectories ξkj (t).

Therefore, the probability of success of the QAA (12) becomes a functional defined on each

of the Langevin source trajectories. Since these trajectories are random, this probability

P0 is characterized by the distribution in the general phase space of the problem, with the

”distribution density functional” defined on the realizations of the Langevin sources and

therefore on the phase coordinates of the system, in the form [23]

W [Λ (t) ,Ω (t)] = exp {−S [Λ (t) ,Ω (t)]} , (21)

with the action functional S defined through the Lagrangian function

S =

∫ T

0

dt′L
[
Λ (t′) ,

·
Λ (t′) ,Ω (t′) ,

·
Ω (t′)

]
, (22)

where
·
Λ = dΛ/dt and

·
Ω = dΩ/dt, and L is the Lagrangian. Following the standard proce-

dure, the Lagrangian for the system (19) is given by [22]

L =
1

2σ2

{∑

k

[( ·
λk − vk

)2

+ σ2v′k

]
+
∑

k,j

(λk − λj)2

( ·
Ωkj

)}2

,

(23)

vk = −γλk +

(∑

l 6=k

σ2

λk − λl

)
,

with v′k (Λ) = ∂vk (Λ) /∂λk. Making use of (12), (19), and (20), we obtain the expected

probability of failure 〈Γ (t)〉 = 1− 〈P0 (t)〉 in the form

〈Γ (t)〉 =

∫ ∫
DΛDΩW [Λ,Ω]

∑N
k=1

∫ t
0
dt′
∫ t

0
dt′′

·
Ωk0 (t′)

·
Ω0k (t′′) exp {−iΦk0}∫ ∫

DΛDΩW [Λ,Ω]
, (24)
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where Φk0 (t′, t′′) =
∫ t′′
t′ dτωk0 (τ) and

∫
DΛDΩW [Λ,Ω] denotes the functional integration

over all trajectories {Λ ≡ Λ(t), Ω ≡ Ω(t)} with the weight defined as a functional probability

density (21), and the denominator is included into (24) for normalization. From (23), it

follows that the ”angular” part enters as an additive quadratic term into the Lagrangian,

and therefore the integration over the angular variables
∫
DΩ(t) in (24) can be done explicitly

[23], with the result

∫
DΩW [Λ,Ω]

·
Ωk0 (t)

·
Ω0k (t′)∫ ∫

DΛDΩW [Λ,Ω]
=

(
σ2

[λk (t)− λ0 (t)]2

)
δ (t− t′) . (25)

Combining (24) and (25), we obtain

〈Γ (t)〉 =
N∑

k=1

∫
DΛ(t)

exp (−Seff [Λ])∫
DΛ′ exp (−Seff [Λ′])

∫ t

0

dt′
σ2

[λk (t′)− λ0 (t′)]2
, (26)

where the effective action Seff [Λ] is taken with the ”truncated” Lagrangian Leff

Leff =
1

2σ2

∑

k

[( ·
λk − vk (Λ)

)2

+ σ2v′k (Λ)

]
. (27)

The evaluation of (26) is still very difficult, since it involves the averaging over the unknown

level distribution.

For the many-body system with exponential number of particles N = 2n, the distribution

of the system’s trajectories in the phase space is expected to be sharply peaked about the

optimal trajectory, defined from the variation principle [21]. The variational principle takes

the form of minimum action

Smin = min
{Λ(t),Ω(t)}

{S [Λ (t) ,Ω (t)]} , (28)

Given (23), the optimal trajectories are obtained from the minimum action principle (28)

as the solutions of the Euler-Lagrange equations

d

dt

(
∂L

∂
·
qi

)
=

(
∂L

∂qi

)
, (29)

where qi = {λi} represent the generalized coordinates [11]. Combining (23) and (29), we

obtain

··
λk (t)−

∑
j

·
λj

(
∂vk
∂λj
− ∂vj
∂λk

)
= − ∂

∂λk
Ueff (Λ) , (30)
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with the effective potential given by

Ueff (Λ) = −1

2

∑

k

(
v2
k (Λ) + σ2∂vk (Λ)

∂λk

)
. (31)

Combining (23), (30) and (31) yields

··
λk (t) = − ∂

∂λk
Ueff (Λ) ,

(32)

Ueff (Λ) = −γ
2

2

∑

k

λ2
k.

The details of the calculations leading to (32) are presented in Appendix A. The effective

potential in (32) can also be derived from the Fokker-Plank equation describing the time

evolution of theN -particle level distribution function [18]. In general, that procedure leads to

the dynamic equations describing the many-particle system in 1D with pairwise interactions.

In a particular case of the unitary ensemble, the pairwise interaction vanishes and the

problem reduces to the N -particle non-interacting system. Therefore, we finally have the

following description of the optimal trajectories

··
λk (t)− γ2λk = 0. (33)

The equations (33) are of the second order and therefore require two initial (or boundary)

conditions for each k = 0, ...N . Since (19) are the first order stochastic differential equations,

we only have one initial condition for the optimal trajectories

λk (t = 0) = λk (0) , (34)

for each k and the final points λk (t = T ) are not fixed. We impose the additional boundary

conditions at t = T in the form

−γλk (T ) +

(∑

l 6=k

σ2

λk (T )− λl (T )

)
= 0, (35)

which insure that at t = T the system belongs to the equilibrium unitary ensemble. Specif-

ically, (35) corresponds to the standard GUE distribution [9], [10]. As we show in Appendix

B, the boundary conditions (35) can also be obtained in the long-time limit for the optimal
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trajectories in case when the terminal conditions at t = T are not fixed and have to be

self-consistently derived from the optimality property of the trajectories. In fact, we show

that the terminal conditions for the ”arbitrary” optimal trajectories are exponentially close

to the equilibrium described by (35). This implies that the ”spread” of the optimal trajec-

tories is exponentially small in the large-time limit, confirming the validity of the approach

described above.

The equations (33) with (34) and (35), provide a close set characterizing the optimal

trajectories of the initial many-body system. In the subsequent section, the probability of

success of the QAA will be evaluated using the solutions for the optimal trajectories.

C. Probability of Success for the QAA

As we have mentioned above, for the system with exponential number of particles N , the

distribution of trajectories in the phase space is expected to be ”sharp” around the optimal

trajectory. Following this argument, we observe that with exponential accuracy [21]

〈Γ (t)〉 =
N∑

k=1

∫ t

0

dt′
σ2

[λ∗k (t′)− λ∗0 (t′)]2
, (36)

where {λ∗k} correspond to the optimal trajectories. In order to simplify the notations, we

will denote {λ∗k} = {λk}, i.e. drop the superscript. This will not cause the confusion, since

we will only consider the optimal trajectories in the rest of the paper. From (33) with (34)

and (35), we obtain

λk (t) = λk (0)
sinh [γ (T − t)]

sinh (γT )
+ λk (T )

sinh (γt)

sinh (γT )
. (37)

The final ”coordinates” {λk (T )} are defined from (35) and correspond to the standard

equilibrium GUE distribution [9], [10] at t = T . Substituting (37) into (36), we obtain

〈Γ (T )〉 =
N∑

k=1

∫ T

0

dt′
σ2 sinh2 (γT )

[ωk0 (0) sinh [γ (T − t′)] + ωk0 (T ) sinh (γt′)]2
. (38)

The integration in (38) can be done explicitly, with the result

〈Γ (T )〉 =
σ2

γ
sinh (γT )

N∑

k=1

1

ωk0 (0)ωk0 (T )
. (39)
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Making use of the terminal condition (35), the probability (39) can be estimated as

〈Γ (T )〉 = sinh (γT )λ0 (T )

〈
1

ωk0 (0)

〉
. (40)

Since the Hamiltonian at t = 0 is given by (6), the average inverse frequency in (40) is

bounded

1

n
≤
〈

1

ωk0 (0)

〉
≤ 1. (41)

On the other hand, according to (35), we have

λ0 (T ) =
σ
√

2N√
γ

. (42)

Since the spectrum of the problem Hamiltonian is bounded in the largen limit, the ground

state energy λ0 (T ) should not depend on n. This is satisfied if

σ2
0 =

σ2

γ
∼ 1

N
, (43)

which is a common scaling in RMT models [9]. As we will see in the subsequent section,

the scaling (43) naturally occurs in the QAA framework. In Appendix C, we show that the

equilibrium N -level distribution only depends on the parameter σ2
0 = σ2/γ, confirming that

the condition (43) is sufficient for the spectrum to be bounded in a finite interval.

Given the estimate (41), the summation over the energy spectrum is performed using the

exact equilibrium condition (35), and therefore the result (40) is exact. This means that

(40) is based on the exact summation over the discrete spectrum valid for any total number

of states N and does not refer to any continuous level distribution arising in the large N

limit. In the large N limit, the equilibrium density of states (DOS) for the GUE ensemble

is given by the famous ”semicircle” law [9], [10]

ρ (λ) =
2N

πλ2
0

√
λ2

0 − λ2, −λ0 ≤ λ ≤ λ0, (44)

with the normalization condition
∫
dλρ (λ) = N . One should note that near vicinity of

the ground state, the level distribution functions may have large corrections, which may

significantly change DOS near the ground state in comparison to the bulk distribution [16].

However, one can show that the main contribution to the probability (39) comes from the
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bulk of the distribution, where there is a large number of states and (44) is valid in the large

N limit. Combining (39) and (44), we obtain analogous to (40)

〈Γ (T )〉 =
σ2

γ
sinh (γT )

〈
1

ωk0 (0)

〉
2N

πλ2
0

2λ0∫

0

dω

ω

√
ω (2λ0 − ω). (45)

From (45), it follows that the integral over the spectrum in the r.h.s. of (45) is accumulated

at the upper bound of the integration, since the integrand only has integrable singularity at

ω = 0. This indicates that the main contribution to (45) and therefore to (39), comes from

the upper part of the spectrum. After evaluation of the integral, (45) yields

〈Γ (T )〉 = sinh (γT )

〈
1

ωk0 (0)

〉
2Nσ2

γλ0

, (46)

which reduces to (40) after taking (42) into account. Based on the above arguments, we can

employ the semicircle distribution to evaluate the average spacing
〈

1
ωk0(0)

〉
. This is done in

Appendix D, and the probability (40) takes the form

〈Γ (T )〉 =
2

πn
λ0 (T ) sinh (γT ) . (47)

Since γT ∼ 1 and the absolute value of the ground state energy λ0 (T ) does not depend on

n, it follows from (47) that the failure probability of the QAA is 〈Γ (T )〉 ∼ 1/n, implying

that the algorithm can be successful in the large n limit. As we will show in the subsequent

section, this is a consequence of the Markovian nature of the Brownian motion model con-

sidered above. In the next section, we will discuss this in more details and compare to the

results in the non-Markovian case.

The result (47) could not be obtained using a standard estimate (5) with ∆ = ω10 being

the smallest gap between the ground state and the first excited level of the total Hamiltonian

(3). As it follows from comparison of (39) and (35), the main contribution to the failure

probability comes from the bulk of the spectrum, implying that the failure of the QAA

occurs due to the interaction of the ground state with the ”cloud” formed by all the excited

states with k = 1, ...N . In other words, it is the large number of possible transitions from the

ground state that may cause the failure of the QAA, not the structure of the minimum gap

in the energy spectrum. The main reason for this is that the phase factors present in (12)

vanish after the integration over the angular variables (25). Note that these phase factors
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contain the transition frequencies and lead to the low transition probabilities in adiabatic

regime. This is not the case in the Brownian motion model considered above, when all the

excited levels work together and the excitation can be effectively viewed as a transition to

the ”cloud” of the excited states. This is in qualitative agreement with [15], confirming the

conclusion that in the driven RMT models, the Landau-Zener mechanism of dissipation [14]

is not important. Indeed, the theory of dissipation based on the Landau-Zener mechanism

assumes [13] that the transitions happen due to the pairwise ”level crossing” events, rather

than the ”collective” interactions picture that follows from our analysis.

In the regime when the QAA is successful considered above, the average minimal gap

is ∆ ' 1/N , and the formal application of the standard estimate gives T & N2, which is

has nothing to do with the result (47). One should note that in some cases, the bound (5)

can be improved by optimally adjusting the control parameter corresponding to the rate

of the quantum adiabatic evolution [1]. In our case, this would correspond to introducing

the time dependent rate parameter γ (t) in (33), and then optimizing with respect to the

function γ (t). However, as we show in Appendix E, the result (39) is essentially invariant

with respect to the choice of γ (t), and therefore (47) does not depend on the functional form

of the rate parameter. The main reason is that, according to the above discussion, the QAA

fails due to the collective interaction of the ground adiabatic state with the cloud of excited

states, and therefore there no well defined ”dangerous” moments of time corresponding to

the avoiding crossing [14], [13].

One may attempt to correct the standard estimate (5) using the average level spacing

∆ = 〈ω10〉 in the vicinity of the ground state instead of the average spacing. The point is

that the spacing near vicinity of the edges of the spectrum may be significantly enhanced

in comparison to the average one [16]. According to the above discussion, these estimates

can not be correct, since they assume that the main contribution to the failure probability

comes from the low-energy part of the spectrum.

IV. MOTIVATIONS FOR BROWNIAN MOTION MODEL

In this section, we will show that the specification considered in a previous section is

actually quite general, since it can be mapped onto (3), with the appropriate choice of the

”trajectory” parametrized by the functions α (t) and β (t), and the problem Hamiltonian
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HP described by a random matrix belonging to the Gaussian Unitary ensemble (GUE).

In general, such mapping yields the time-dependent coefficients {γ, σ} characterizing the

Ornstein-Uhlenbeck process. We will specify a particular parametrization that leads the

constant coefficients, and therefore the stationary distributions.

Consider the QAA (3) with a random GUE problem Hamiltonian HP = V = H (T ) and

the driver HD = H (0). In what follows, we will refer to this as a ”driven GUE” model.

Since V belongs to the GUE, its matrix elements are independent and Normally distributed,

Vkj ∼ N (0, σ0). Taking this and (3) into account, we derive the probability distribution for

the matrix elements of the Hamiltonian H(t) in the form

P [H, t] = CN (t)
∏

k,j

exp




−

[
Hkj − α(t)H (0)kj

]2

2σ2
0β

2 (t)




, (48)

where CN (t) is the normalization constant. Suppose there is a change of parametrization

τ = τ (t) in (3) that maps the total Hamiltonian dynamics (3) onto the Ornstein-Uhlenbeck

process (13). The process (13) leads to the following probability distribution

P [H, τ ] = [4πD (τ)]N
2/2
∏

k,j

exp

{
−
[
Hkj −Hkj (τ)

]2
4D (τ)

}
, (49)

with

Hkj (τ) = H (0)kj exp (−γτ) ,

(50)

D (τ) =
1

2

∫ τ

0

dτ ′σ2 (τ ′) exp [−2γ (τ − τ ′)] ,

and we assumed that the effective variance σ2 (τ) may be time-dependent. Comparing (48)

and (49), we obtain the conditions on the parameters γ and σ2 (τ), in the form

exp (−γτ) = α(t),

(51)∫ τ

0

dτ ′σ2 (τ ′) exp (2γτ ′) = σ2
0β

2 (t) exp (2γt) ,

and therefore
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τ (t) = −1

γ
ln [α(t)] ,

(52)

σ2 (τ) = σ2
0 exp (−2γτ)

d

dτ

{
β2 [t (τ)] exp (2γτ)

}
,

implying that the effective variance σ2 (τ) is indeed in general time-dependent. In what

follows, we consider the QAA (3)

H(t) = H (0) exp (−γt) + V [1− exp (−γt)] , (53)

where γ is a real parameter characterizing the speed of the parametric evolution. The

parametrization (53) is a particular case of (3) with

α(t) = exp (−γt) , β (t) = 1− exp (−γt) , T ∼ 1

γ
, (54)

and the parameters α(t) and β (t) being the monotonic functions for t ∈ [0,+∞] of (53).

From (52), we derive the parameters of the corresponding Ornstein-Uhlenbeck process in

the form

τ (t) = t,

(55)

σ2 (t) = 2γσ2
0 [1− exp (−γt)] ,

implying that the trajectories (53) are mapped onto the Ornstein-Uhlenbeck process with

time-dependent variance parameter. From (55), it follows that the time dependence of the

effective variance is slow and achieves the ”saturation” during the runtime of the algorithm,

when t ∼ 1/γ. As we show in Appendix F, there is a particular class of trajectories corre-

sponding to the Ornstein-Uhlenbeck process with constant parameters [17].

As it was pointed out in [17], the mapping (52) is exact in a sense that the level distri-

bution obtained from the corresponding Ornstein-Uhlenbeck model is identical to the level

distribution of the parametrically driven Hamiltonian (3), at each instant of time. However,

the actual level dynamics of the two models are quite different. For this reason, the level
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correlations calculated at different time moments are not equivalent for (13) and the corre-

sponding (53). In particular, the driven system (53) contains the ”quenched” disorder terms

leading to the multiple time correlations, which are absent in a Markovian system (13),

[17]. In case of the QAA with the random problem Hamiltonian (53), the multiple time

correlators can be easily estimated. Making use of this and the knowledge of the effective

level dynamics obtained by mapping onto (13), we will be able to estimate the probability

of success for the model (53). The probability of failure for the QAA is obtained from (12)

in the form

Γ (t) =
N∑

k=1

∫ t

0

dt′
∫ t

0

dt′′

[ .

H (t′)
]
k0

[ .

H (t′′)
]

0k

ωk0 (t′)ωk0 (t′′)
exp

{
−i
∫ t′′

t′
dτωk0 (τ)

}
, (56)

where we took into account the identity

(
∂

∂t

)

k0

= 〈φk (t) |
.

H (t)

ωk0 (t)
|φ0 (t)〉, (57)

with
.

H (t) = dH
dt

. In case (53), we have dH
dt

= −γ (H − V ), and (56) yields

Γ (t) = γ2σ2
0

N∑

k=1

|Ck (t)|2 ,

(58)

Ck (t) =

∫ t

0

dt′
exp

{
−i ∫ t′

0
dτωk0 (τ)

}

ωk0 (t′)
,

where we took into account the correlations 〈Vk0, V0k〉 = σ2
0 and that the Hamiltonian H (t)

is diagonal in the adiabatic basis.

The second of (58) represents the transition amplitude, which typically contains two com-

ponents. In the adiabatic limit, the leading contribution to the integral (58) comes from the

endpoints of the integration and corresponds to the corrections to the adiabatic eigenstates

due to the finite rate of the parametric transformation (53). The second contribution comes

from the actual transitions between the ”true” dynamic states with the non-adiabatic cor-

rections to the states taken into account. The ”transition” term is exponentially small in the

adiabatic limit and exhibits the non-analytical dependence on the adiabaticity parameter

([8]). On the other hand, the ”state correction” term typically has a power-law dependence

on the adiabaticity parameter.
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The general setting of the QAA requires that the solution of the initial optimization

problem is encoded in the adiabatic ground state of the Hamiltonian [1]. Therefore, in

order to evaluate the success of the QAA, one has to take into account both ”correction”

and ”transition” contributions to the integral (58). The correction term gives the leading

contribution and therefore determines the success of the QAA. This distinguishes between

the approach adopted in the present paper and the one from ([12]). In ([12]), the authors

evaluated the failure of QAA based on the results ([13]) for the dissipation rate in the driven

RMT ensembles. The dissipation was estimated in ([13]) based on the Landau-Zener theory,

which takes only transition components in (58) into account. While this was a reasonable

approximation to the estimation of the total dissipation rate, this approach is not applicable

to the analysis of the QAA. The point is that the evaluation of the QAA performance requires

taking into account any deviations from the adiabatic ground state, regardless whether they

occur due to the ”true” transitions to the ”corrected” states, or the corrections to the states

themselves. Therefore, it is essential that both contributions to (58) be taken into account.

Moreover, from the above discussion, it follows that the ”correction” terms give the leading

contribution, and therefore the ”transition” effects can be neglected in the adiabatic limit.

This is consistent with the results of ([15]). The ”correction” contribution in (58) is given

by ([8])

Ck (t) =
−i

[ωk0 (t)]2

{
1− exp

[
−i
∫ t

0

dt′ωk0 (t′)
]}

. (59)

Combining (58) and (59), we obtain the failure probability of QAA

Γ (T ) = 4γ2σ2
0

N∑

k=1

1

[ωk0 (T )]4
sin2

[
1

2

∫ T

0

dt′ωk0 (t′)
]
. (60)

In order to evaluate the failure probability (60), we have to specify the level dynamics

of the driven model (53). Making use of the mapping (55) enables us to apply the optimal

trajectory methods developed for the Brownian motion model. The optimal trajectories

characterized by (37), and we obtain for the transition frequencies along the optimal trajec-

tories in the form

ωk0 (t) = ωk0 (0)
sinh [γ (T − t)]

sinh (γT )
+ ωk0 (T )

sinh (γt)

sinh (γT )
. (61)

Substituting (61) into (60), we obtain
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Γ (T ) = 4γ2σ2
0

N∑

k=1

1

[ωk0 (T )]4
sin2

[
1

2
Φk0 (T )

]
, (62)

with the total phase Φk0 (T ) defined by

Φk0 (T ) =
2

γ

[
ωk0 (0) + ωk0 (T )

2

]
coth

(
γT

2

)
. (63)

Note that the total phase contains the large factor 1/γ ∼ T , as expected. According to

the estimates from the previous section, the minimal level separations are estimated as

ωk0 (0) ∼ 1 and ωk0 (T ) ∼ 1
N

. Since in adiabatic limit the rate of parametric evolution is

much smaller than the initial transition frequency γ << ωk0 (0), the total phase is large and

sin2
[

1
2
Φk0 (T )

] ≈ 1
2
. Therefore, (62) reduces to

Γ (T ) = 2γ2σ2
0

N∑

k=1

1

[ωk0 (T )]4
. (64)

From (64), it follows that in order to evaluate the total failure probability of QAA,

we need to know the density of states at the end of the evolution process. This is the

consequence of the fact that the level separation is minimal at the end of the evolution.

The final configuration of the optimal trajectory is given by (35) and corresponds to the

standard GUE and the average density of states is given by the semicircle law (44). However,

the expression (64) can not be evaluated in a continuous limit analogous to (39), since the

corresponding integral diverges on the lower limit. This implies that the sum is accumulated

on the lower limit corresponding to the low-frequency transitions, and the structure of DOS

near the lower edge of the spectrum may be important. As it was shown in [16], the DOS

in GUE near the ground state has the form of the power law

ρ (λ) ∼ λq(λ), (65)

where the exponent q (λ) = 1/6 in the narrow range near the ground state and tends to

the limit q (λ) = 1/2 corresponding to (44), outside that range. Making use of (65), the

probability (64) can be estimated as

Γ (T ) = 2γ2σ2
0

N∑

k=1

1

k4 [∆ωk]
4 , (66)

with
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∆ωk = (1/N) [ρ (ω)]−1 ∼ (1/N) [∆ωk]
−q k−q. (67)

Combining (66) and (67), we obtain

Γ (T ) = 2γ2σ2
0 N

p

N∑

k=1

1

kp
≈ 2

p− 1
γ2σ2

0 N
p, (68)

where p = 4/ (1 + q) > 2. The estimate of the power of QAA is defined from the requirement

that the failure probability (68) is small. Taking into account (54) and that in the GUE

σ2
0 ∼ 1/N , we estimate the runtime of the QAA

T >> Na, a =
3− q

2 (1 + q)
, (69)

where the exponent q comes from (65). From (69), it follows that 17/14 ≤ a ≤ 5/6, where

the upper and lower limits correspond to q = 1/6 and q = 1/2, respectively. The estimate

(69) implies the exponential complexity of the QAA with a ' 1.

Comparing (47) and (68), we observe that the Markovian evolution model (13) may lead

to polynomial complexity, whereas the driven GUE model (53) always leads to the exponen-

tial complexity of QAA. This has a simple intuition. According to the above discussion, the

main difference between the models (13) and (53) comes from different multiple time level

correlations. In the Markovian model (13), there are only short-range correlations, whereas

in the driven RMT model (53), the long-range multiple time correlations are present. On

one hand, this leads to the complete cancellation of phases, which removes the exponentially

small factors for the transitions to the highly excited states and leads to the diffusion type of

dissipation process in (13). On the other hand, the absence of the long-range multiple time

correlations leads to much weaker effective interaction between the states in the Markovian

model (13) as opposed to (53). The comparison of (47) and (68) indicates that the ”weak-

ness” of effective transitions is the leading effect that can make the Markovian type QAA

(13) successful.

One should note that the driven GUE model may be obtained from the QAA (3) with

generally non-random problem Hamiltonian HP under certain conditions imposed on the

problem Hamiltonian. Namely, the assumption is that HP is presented by a ”full matrix”

in the adiabatic basis and does not possess any specific structure, implying the lack of any

additional integrals of motion [19], [20], [17]. This leads to the possibility of averaging over
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the ”quenched disorder” introduced by the static fluctuations of the matrix elements, which

makes the problem equivalent to the driven GUE model considered above [17]. Essentially,

the assumption implies the presence of multiple time correlators with large correlation time,

and basis invariance typical for the static RMT ensembles.

In order to establish the connection with the specific combinatorial problems, note that

the control Hamiltonian H(t) in QAA (3) may be quite far from the basis-invariant GUE.

From the above analysis, it follows that the two identical level distributions may correspond

to completely different QAA performance. This difference can only be captured considering

the multiple time correlations of the order higher than the second one [17]. In particular, the

above results indicate that the applicability of the static RMT should be examined making

use of the multiple time correlations. In particular, it can not be uniquely verified based

on the Brody parameter defined through the single-time nearest neighbor level distributions

[12].

V. CONCLUSION

We analyze the power of quantum adiabatic algorithms (QAA) for solving computation-

ally hard optimization problems within a theoretical framework based on the random matrix

theory (RMT). We present two types of the driven RMT models.

In the first model, the ”driving” Hamiltonian is represented by Brownian motion in

the matrix space. We use the Brownian motion model to obtain a description of multiple

avoided crossing phenomena. The model allows for the close-form analytical treatment in

adiabatic approximation, within the method of optimal trajectories [23]. We show that the

failure mechanism of the QAA is due to the interaction of the ground state with the ”cloud”

formed by all the excited states. This confirms that in the driven RMT models, the Landau-

Zener mechanism of dissipation based on the assumption of pairwise level interactions, is

not important (cf. [15]). We show that the QAA may have a finite probability of success

in a certain range of parameters, implying the possibility of polynomial complexity of the

algorithm. This model can be viewed as a relatively ”mild” test on the general QAA per-

formance for the computationally hard optimization problems. In this case, the quantum

evolution is not affected by the ”accidental” level crossing phenomenon that may lead to the

QAA failure in standard models [13], and the only reason for the possible QAA failure is a



22

complex structure of the control Hamiltonian. We also note that the number of independent

parameters in the control Hamiltonian is exponentially large and that formally creates a

challenge for its experimental implementation. However, as mentioned above, this Hamilto-

nian can reflect certain universality properties of realistic physical many body Hamiltonians.

This question is referred to future studies.

The second model corresponds to the standard QAA with the problem Hamiltonian

taken from the Gaussian Unitary RMT ensemble (GUE). We show that the eigenvalues and

eigenvector dynamics in this driven GUE model can be mapped onto the dynamics in the

Brownian motion model considered before. This enables us to apply the optimal trajectories

approach developed for the previous case, to the driven RMT model. However, the driven

RMT and the Markovian Brownian motion models have different structure of the intertem-

poral level correlations, and this leads to different performance of the QAA. The Brownian

motion model may lead to polynomial complexity, whereas the driven GUE model always

gives the exponential complexity of the algorithm. In the Markovian Brownian motion

model, there are only short-range correlations, whereas in the driven RMT model, the long-

range multiple time (intertemporal) correlations are present. The absence of the long-range

intertemporal correlations leads to much weaker effective interaction between the states in

the Markovian model (13) as opposed to (53). Our results indicate that this ”weakness”

of effective transitions is the leading effect that may in principle make the Markovian type

QAA (13) successful. Regarding the connection with the specific combinatorial problems,

the above analysis suggests that the applicability of the static RMT should be studied using

the multiple time correlations. In particular, it can not be established based on the Brody

parameter defined through the single-time nearest neighbor level distributions.

Finally, we note that even when control Hamiltonian does not posses basis-invariant

properties explored in this paper we expect that one can use a method of optimal trajectory

for random time-dependent Hamiltonians presented above which is based on the angular

decomposition described in Sec. IIIA.
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VI. APPENDIX A

According to (31) , the effective potential is given by

Ueff (Λ) = −1

2

∑

k

(
v2
k (Λ) + σ2∂vk (Λ)

∂λk

)
, (70)

with the velocities vk (Λ) defined by (23). From (23) and (70), we obtain

Ueff (Λ) = −γ
2

2

∑

k

λ2
k − γλk

∑

k,l 6=k

σ2

λk − λl −

(71)

−1

2

[ ∑

k,l 6=k,l′ 6=k

σ4

(λk − λl) (λk − λl′) −
∑

k,l 6=k

σ4

(λk − λl)2

]
.

Under the cyclic permutation of the indices {k, l.l′}, we have

1

(λk − λl) (λk − λl′) +
1

(λl − λl′) (λl − λk) +
1

(λl′ − λk) (λl′ − λl) = 0,

therefore the first term in the square brackets in the r.h.s. of (71) reduces to

∑

k,l 6=k,l′ 6=k

σ4

(λk − λl) (λk − λl′) =
∑

k,l 6=k

σ4

(λk − λl)2 , (72)

and the two terms in the square brackets in (71) sum up to zero. The second term in the

r.h.s. of (71) is given by

γσ2
∑

k,l 6=k

λk
λk − λl = γσ2N (N − 1)

2
= const. (73)

Combining (71), (72) and (73) finally yields

Ueff (Λ) = −γ
2

2

∑

k

λ2
k,

identical to (32) from the text.

VII. APPENDIX B

According to (33), the optimal trajectories satisfy
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··
λk (t)− γ2λk = 0. (74)

The equations (33) are of the second order and therefore require two initial (or boundary)

conditions for each k = 0, ...N . Suppose that we only have one initial condition for the

optimal trajectories

λk (t = 0) = λk (0) , (75)

for each k and the final points λk (t = T ) are not fixed. Following the standard procedure

[11], we impose the additional ”transversality” boundary conditions at the final points

(
∂L

∂
·
qi

)

t=T

= 0, (76)

which yield the boundary conditions for our problem

·
λk (T ) = vk [Λ (T )] = −γλk (T ) +

(∑

l 6=k

σ2

λk (T )− λl (T )

)
. (77)

The equations (33) with (75) and (77), provide a close set. From (33) with (75) and (77),

we obtain

λk (t) = λk (0)
sinh [γ (T − t)]

sinh (γT )
+ λk (T )

sinh (γt)

sinh (γT )
. (78)

The final ”coordinates” {λk (T )} are defined from (33) and (77) as solutions of the self-

consistent equation

λk (T ) = λk (0) exp (−γT ) +
[1− exp (−2γT )]

γ

(∑

j 6=k

σ2

λk (T )− λj (T )

)
, (79)

which indicates that in the large-time limit γT >> 1, the eigenvalues {λk (T )} are separated,

i.e. the degeneracy is completely lifted, even though the initial distribution {λk (0)} may

have a significant degree of degeneracy. Specifically, (79) leads to the standard equilibrium

GUE distribution described by (35) in the large-time limit.
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VIII. APPENDIX C

In this Appendix, we will derive the equilibrium N -particle distribution for the levels

and show that it is indeed an equilibrium GUE distribution for any choice of the ”rate”

parameter α (t) introduced in the text. According to the first of equation (19), the non-

stationary N -level distribution function P (Λ, t) satisfies the Fokker-Plank equation [18]

∂P (Λ, t)

∂t
+

∂

∂λk

[
vk (Λ)P (Λ, t)− σ2

2

∂P (Λ, t)

∂λk

]
, (80)

and the equilibrium distribution is given by

Peq (Λ) = C exp

[
− 2

σ2
Veff (Λ)

]
, (81)

with a normalization constant C and the effective potential

Veq (Λ) = −
Λ∫
dλkvk (Λ) =

γ

2

∑

k

λ2
k − σ2

∑

k,l 6=k
log |λk − λl| . (82)

Combining (81) and (82), we finally obtain

Peq (Λ) = C exp

[∑

k,l 6=k
log (λk − λl)2 − γ

σ2

∑

k

λ2
k

]
, (83)

corresponding to the standard GUE distribution [9] for any choice of parameters γ and σ.

IX. APPENDIX D

In this Appendix, we employ the semicircle distribution to evaluate the probability (39).

According to (6), the levels of H (0) = HD are equally spaced with ωk0 (0) = k and the

degeneracy of the k-th level is

gk =
(n
k

)
=

n!

(n− k)!k!
. (84)

In the continuous limit of (44), we have

ωk0 (0) = k (ω) =
n

λ0

ω, (85)
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where the last equality follows from the observation that the width of the spectrum at t = 0

is 2ωn0 (0) = 2n and there are 2n + 1 distinct levels, whereas the spectrum at t = T is

bounded within the range of 2λ0. Combining (39) and (44), we obtain

〈Γ (T )〉 =
σ2

γ
sinh (γT )

2N

πλ2
0

2λ0∫

0

dω

ω

√
ω (2λ0 − ω)

gk(ω)

k (ω)
, (86)

with the degeneracy gk(ω) given by (84) and (85). In the large n limit, the degeneracy (84)

has a sharp peak at k = n/2, and (86) reduces to

〈Γ (T )〉 =
σ2

γ
sinh (γT )

2N

πλ2
0

2λ0∫

0

dω

ω

√
ω (2λ0 − ω)

λ0

n

g (ω)

ω
, (87)

with

g (ω) =

√
n

2π
exp

[
−n (ω − λ0)2

2λ2
0

]
. (88)

Evaluating (87) in the large n limit, we obtain

〈Γ (T )〉 =
2

πn

σ2

γ
sinh (γT )

2N

λ0

, (89)

which reduces to (47) after taking (42) into account.

X. APPENDIX E

In this Appendix, we show that the estimate (47) for the power of the QAA algorithm

given in the text for a particular case of the constant parameter characterizing the rate

of changing the Hamiltonian α ≡ const, can not be improved by introducing the time-

dependent rate γ (t).

The failure probability of the QAA is given by

〈Γ (t)〉 =
N∑

k=1

∫ t

0

dt′
σ2

[ωk0 (t′)]2
, (90)

where ωk0 (t) = λk (t) − λ0 (t) are the transition frequencies defined corresponding to the

optimal trajectories {λk (t)}.
··
λk (t)− γ2 (t)λk = 0. (91)
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Analogous to (37), the solution of (91) can be presented in the form

λk (t) = λk (0)ϕ1 (t) + λk (T )ϕ2 (t) , (92)

where {ϕ1 (t) , ϕ2 (t)} are the two linearly-independent solutions of the second-order ODE

(91) satisfying the following boundary conditions

ϕ1 (0) = 1; ϕ1 (T ) = 1;

(93)

ϕ2 (0) = 0; ϕ2 (T ) = 1.

In this case, it is well known [24] that for the system (91), the Wronskian W (γ) defined by

W (γ) = ϕ1 (t)
dϕ2 (t)

dt
− ϕ2 (t)

dϕ1 (t)

dt
= [ϕ2 (t)]2

d

dt

[
ϕ1 (t)

ϕ2 (t)

]
, (94)

is an integral of motion. Substituting (92) into (90), we obtain analogous to (38)

〈Γ (T )〉 =
N∑

k=1

∫ T

0

dt
σ2

[ωk0 (0)ϕ1 (t) + ωk0 (T )ϕ2 (t)]2
. (95)

Making use of (94), (95) reduces to

〈Γ (T )〉 =
N∑

k=1

∫ +∞

0

du

W (γ)

σ2

[ωk0 (0) u+ ωk0 (T )]2
, (96)

where we made the substitution u = ϕ1 (t) /ϕ2 (t) and took (93) into account. After the

integration (96) yields

〈Γ (T )〉 =
σ2

W (γ)

N∑

k=1

1

ωk0 (0)ωk0 (T )
, (97)

leading to the same bound on the runtime as the estimate (47). Note that for the case of

constant γ = 1/T considered in the text, the basis functions {ϕ1 (t) , ϕ2 (t)} lead to (37),

and the Wronskian is given by W (γ) = γ/ sinh (γ). In this case, (97) reduces to (39) from

the text.
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XI. APPENDIX F

Following [17], consider the QAA (3)

H(t) = cos(Ωt)H0 + sin (Ωt) V, (98)

where Ω is a real parameter characterizing the ”speed” of the parametric evolution. The

parametrization (98) is a particular case of (3) with

α(t) = cos(Ωt), β (t) = sin (Ωt) , T =
π

2Ω
, (99)

and the parameters α(t) and β (t) being the monotonic functions of time during the runtime

t ∈ [0, T ] of (98). From (52), we derive the parameters of the corresponding Ornstein-

Uhlenbeck process in the form

τ (t) = −1

γ
ln [cos(Ωt)] ,

(100)

σ2 = 2γσ2
0,

implying that the trajectories (98) are mapped onto the Ornstein-Uhlenbeck process with

constant parameters [17].
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